PROPOSITIONAL LOGIC (2)

based on

Huth & Ruan Logic in Computer Science: Modelling and Reasoning about Systems Cambridge University Press, 2004

Russell & Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2010

Clauses

Clauses are formulas consisting only of \lor and \neg

 $\begin{array}{c} p \lor q \lor \neg r \\ \neg p \lor \neg q \end{array}$

(brackets within a clause are not allowed!)

they can also be written using \rightarrow , \lor (after \rightarrow) and \land (before \rightarrow)

Empty clause is considered *false*

$$\begin{array}{c} r \to p \lor q \\ p \land q \to \bot \\ \top \to p \lor q \\ \bullet \top \to \bot \end{array}$$

Clause without positive literal

Clause without negative literal

an atom or its negation is called a literal

Conjunctive & Disjunctive Normal Form

 A formula is in <u>conjunctive normal form</u> if it consists of a conjunction of clauses

$$(p \lor q \lor \neg r) \land (p \lor \neg q) \land (p \lor r)$$

(r \rightarrow p \langle q) \langle (T \rightarrow p \langle r)

- "conjunction of disjunctions"
- A formula is in <u>disjunctive normal form</u> if it consists of a disjunction of conjunctions

$$(p \land q \land \neg r) \lor (p \land \neg q) \lor (p \lor r)$$

Conjunctive & Disjunctive Normal Form

The transformation from CNF to DNF is exponential

 $(p_1 \lor q_1) \land (p_2 \lor q_2) \land (p_3 \lor q_3) =$

 $(p_1 \land p_2 \land p_3) \lor (p_1 \land p_2 \land q_3) \lor (p_1 \land q_2 \land p_3) \lor (p_1 \land q_2 \land q_3) \lor (q_1 \land p_2 \land q_3) \lor (q_1 \land p_2 \land q_3) \lor (q_1 \land q_2 \land q_3) \lor (q_1 \land q_2 \land q_3) \lor (q_1 \land q_2 \land q_3) \lor$

Conjunctive Normal Form

Any formula can be written in CNF

$$\begin{array}{rcl} (p \lor q \to r) \lor (q \to p) &=& \neg (p \lor q) \lor r \lor \neg q \lor p \\ &=& (\neg p \land \neg q) \lor r \lor \neg q \lor p \\ &=& (\neg p \lor r \lor \neg q \lor p) \\ && \land (\neg q \lor r \lor \neg q \lor p) \\ &=& (\neg q \lor r \lor p) \end{array}$$

(consequently, any formula can also be written in DNF, but the DNF formula may be exponentially larger)

Checking Satisfiability of Formulas in DNF

 Checking DNF satisfiability is easy: process one conjunction at a time; if at least one conjunction is not a contradiction, the formula is satisfiable

→ DNF satisfiability can be decided in polynomial time

$$(p_{1} \land p_{3} \land \neg p_{3}) \lor (p_{1} \land \neg p_{2} \land \neg p_{3}) \lor (p_{1} \land \neg p_{2} \land p_{3}) \lor (p_{1} \land \neg p_{2} \land p_{3}) \lor (\neg p_{1} \land p_{3} \land \neg p_{3}) \lor$$

Conversion to DNF is not feasible in most cases (exponential blowup)

Checking Satisfiability of Formulas in CNF

 No polynomial algorithm is known for checking the satisfiability of arbitrary CNF formulas

Example:

we could use such an algorithm to solve graph coloring with *k* colors • for each node *i*, create a formula

 $\phi_i = p_{i1} \lor p_{i2} \lor \cdots \lor p_{ik}$

indicating that each node *i* must have a color

• for each node *i* and different pair of colors *c*, and *c*, create a formula

 $\phi_{ic_1c_2} = \neg (p_{ic_1} \land p_{ic_2}) = \neg p_{ic_1} \lor \neg p_{ic_2}$ indicating a node may not have more than 1 color

• for each edge, create *k* formulas

 $\phi_{ijc} = \neg (p_{ic} \land p_{jc}) = \neg p_{ic} \lor \neg p_{jc}$ indicating that a pair connected nodes *i* and *j* may not both have color *c* at the same time

"At-most-once" constraint

- Let us have variables x_1, \ldots, x_n and require that at most one of these variables is one
- Constraints on the previous slide:

 $(\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (\neg x_1 \lor \neg x_n) \land \dots \land (\neg x_{n-1} \lor \neg x_n)$

→
$$n(n-1)/2$$
 clauses in total

We can do better...

"At-most-once" constraint

- Introduce additional variables $a_1, \ldots a_n$
- Idea: let a_i be true if one of x_1, \ldots, x_i is true
- Formally:

 $\neg a_i \vee \neg x_{i+1} \quad (a_i \text{ and } x_{i+1} \text{ may not be true at the same time})$ $\neg a_i \vee a_{i+1} \quad (\text{if } a_i \text{ is true, then } a_{i+1} \text{ is true})$ $\neg x_i \vee a_i \quad (\text{if } x_i \text{ is true, then } a_i \text{ is true})$ for all $1 \leq i \leq n-1$

3(n-1) clauses in total!

SAT Solvers

- A satisfiability solver (SAT solver) is an computer system that takes a CNF formula as input, and returns:
 - False, if the formula is unsatisfiable
 - A *model*, i.e. a truth assignment to the symbols in the formula satisfying the formula, if the formula is satisfiable.
- A SAT solver can be used to solve many problems, like coloring problems, traveling salesmen problems, etc.

Resolution Rule

Essential in most satisfiability solvers for CNF formulas is the **resolution rule** for clauses:

Given two clauses $l_1 \lor \cdots \lor l_k$ and $m_1 \lor \cdots \lor m_n$ where $l_1, \ldots, l_k, m_1, \ldots, m_n$ represent literals and it holds that $l_i = \neg m_j$, then it holds that

$$l_1 \lor \cdots \lor l_k, m_1 \lor \cdots \lor \cdots m_n \vdash_R \\ l_1 \lor \cdots \lor l_{i-1} \lor l_{i+1} \lor \cdots \lor l_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots m_n$$

Example: $p \lor q \lor \neg r, r \lor s \vdash_R p \lor q \lor s$ $r \to p \lor q, r \lor s \vdash_R p \lor q \lor s$

Proof for Resolution on an example

Completeness of Resolution

• If it holds that $C_1, \ldots, C_n \models \bot$ for clauses C_1, \ldots, C_n (i.e. the clauses are a contradiction), then we can derive \bot from C_1, \ldots, C_n by repeated application of the resolution rule

How to find the resolution steps in general? For some types of clauses it is easier...

The story till now...

- Semantic entailment: $\varphi \models \psi$ Are all models of formula φ also models of ψ ?
 - If $\varphi \models \bot$, the formula φ is unsatisfiable
 - We are interested in procedures for determining this relationship
- Approach 1: search for a proof that uses the rules of natural deduction
 - Natural deduction provides "natural" proofs, i.e. short arguments such as humans would give; however, such proofs can be hard to find by a computer

The story till now...

- Approach 2: employ the rules of resolution
 - Note that $\varphi \models \psi$ iff $\varphi \land \neg \psi \models \bot$
 - We first *normalize* formulas φ and $\neg \psi$ in conjunctive normal form (giving φ' and ψ')
 - Then we repeatedly apply the *resolution rule* on $\varphi' \wedge \psi'$ till we either cannot derive new clauses or we derive \perp
 - If we derive ⊥ by means of resolution, it can be shown that the formula is unsatisfiable
 - Otherwise, it is satisfiable

The story till now...

- Example of resolution $\varphi = (a \lor b \lor c) \land (\neg a \lor a') \land (\neg b \lor b') \land (\neg c \lor c')$ $\varphi \vdash_R \varphi \land (a' \lor b \lor c) \land (a \lor b' \lor c) \land (a \lor b \lor c') = \varphi'$ $\vdash_R \varphi' \land (a' \lor b' \lor c) \land (a' \lor b \lor c') \land (a \lor b' \lor c') = \varphi''$ $\vdash_R \varphi'' \land (a' \lor b' \lor c')$
- In the general case, the repeated application of resolution can yield an exponential number of clauses...
 - We would prefer not to store and generate all of these

Principles of Efficient SAT solvers

Definite clauses &

Horn clauses

 A <u>definite clause</u> is a clause with exactly one positive literal

 $p,q,p \land q \to t$

• A <u>horn clause</u> is a clause with at most one positive literal

$$p,q,p \land q \to t, p \land q \to \bot$$

A clause with one positive literal is called a **fact**

Forward chaining for Definite clauses

 The <u>forward chaining algorithm</u> calculates facts that can be entailed from a set of definite clauses

```
C = \text{initial set of definite clauses}
repeat
if there is a clause p_r, ..., p_n \rightarrow q in C where p_r, ..., p_n are
facts in C then
add fact q to C \leftarrow
Resolution
end if
until no fact could be added
return all facts in C
```

This algorithm is complete for facts: any fact that is entailed, will be derived.

Forward chaining for Horn

clauses

- We now also allow to add \perp and other clauses without positive literals to *C*
- We stop immediately \(\box) when is found, and return that the set of formulas is contradictory.

$$\begin{array}{l} \mathbf{C}_{1} = \{p, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \bot\} \\ \mathbf{C}_{2} = \{p, q, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \bot\} \\ \mathbf{C}_{3} = \{p, q, r, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \bot\} \\ \mathbf{C}_{4} = \{p, q, r, \bot, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \bot\} \end{array}$$

Note:

1) a set of definite clauses is always satisfiable.

2) we can decide in linear time whether a set of Horn clauses is satisfiable.

Deciding entailment for Horn clauses

Suppose we would like to know whether

$$C_1,\ldots,C_n\models p_1,\ldots,p_n\to q$$

where C_1, \ldots, C_n are Horn clauses; then it suffices to determine whether

$$C_1,\ldots,C_n,p_1,\ldots,p_n\vdash_R q$$

(we can show this by means of \rightarrow introduction)

 As entailment of facts can be decided in linear time, Horn clause entailment can be determined in linear time as well

Deciding satisfiability of generic CNF formulas: DPLL

- The DPLL algorithm for deciding satisfiability was proposed by Davis, Putman, Logeman and Loveland (1960, 1962)
- General ideas:
 - we perform **depth-first** search over the space of all possible valuations
 - based on a partial valuation, we simplify the formula to remove redundant literals
 - based on the formula, we fix the valuation of as many atoms as possible

DPLL: Simplification

- If the valuation of atom p is "true"
 - every clause in which literal p occurs, is removed
 - from every clause in which p is negated, $\neg p$ is removed

$$\{p = true\}, (p \lor q) \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \lor \neg r) \\ \{p = true\}, (\neg p \lor q) \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land (q \lor \neg r)$$

similar to resolution

- Similarly, if the valuation of atom p is "false"
 - every clause in which literal $\neg p$ occurs, is removed
 - from every clause in which *p* occurs, literal *p* is removed

DPLL: Simplification

• Special case 1 of simplification is when an empty clause is obtained, i.e. the clause \perp

$$\{p = true\}, \neg p \land (q \lor r) \implies \{p = true\}, \bot \land (q \lor r) \\ \Rightarrow \{p = true\}, \bot \end{cases}$$

- in this case the current valuation can never be extended to a valuation that satisfies the formula
- Special case 2 of simplification is when the empty CNF formula is obtained, i.e. the formula ⊤

$$\{p=false\}, \neg p \Rightarrow \{p=false\}, \top$$

• in this case we have found a satisfying valuation

DPLL: Fixing pure symbols

If an atom always has the same sign in a formula (i.e., the literals *p* and ¬*p* do not occur at the same time), the atom is called *pure*. We fix the valuation of a pure atom to the value indicated by this sign

$$\emptyset, (p \lor q) \land (p \lor \neg r) \Rightarrow \{p = true\}, (p \lor q) \land (p \lor \neg r)$$
$$\emptyset, (\neg p \lor q) \land (\neg p \lor \neg r) \Rightarrow \{p = false\}, (\neg p \lor q) \land (\neg p \lor \neg r)$$

 Note: we can apply simplification afterwards and remove redundant clauses

DPLL: Fixing unit clauses

• If a clause consists of only one literal (positive or negative), this clause is called a *unit clause*. We fix the valuation of an atom occurring in a unit clause to the value indicated by the sign of the literal.

$$\emptyset, p \land (q \lor r) \Rightarrow \{p = true\}, p \land (q \lor r)$$

 Also here, we apply simplification afterwards; after simplification, we may have new unit clauses, which we can use again; this process is called *unit propagation*

$$\begin{split} & \emptyset, p \land (\neg p \lor r) \\ & \Rightarrow \{p = true\}, p \land (\neg p \lor r) \\ & \Rightarrow \{p = true\}, r \qquad \qquad \Rightarrow \{p = true, r = true\}, r \end{split}$$

DPLL Algorithm

DPLL (valuations V, formula φ) φ' = simplification of φ based on V if φ' is an empty formula **then return** true if φ' contains the empty clause **then return** false if φ' contains a pure atom p with sign v then return DPLL($V \cup \{p=\nu\}, \varphi'$) if φ' contains a unit clause for atom *p* with sign *v* then return DPLL($V \cup \{p=v\}, \varphi'$) let p be an arbitrary atom occurring in φ' **if** DPLL($V \cup \{p=true\}, \varphi'$) **then return** true else return DPLL($V \cup \{p=false\}, \varphi'$)

Branching

• <u>Component analysis:</u> if the clauses can be partitioned such that variables are not shared between clauses in different partitions, we solve the partitions independently

$$(p \lor q) \land (\neg p) \land (r \lor s) \land r$$

component 1 component 2

 <u>Value and variable ordering</u>: when choosing the next atom to fix, try to be clever (i.e. pick one that occurs in many clauses)

Clause learning: if a contradiction is found, try to find out which assignments caused this contradiction, and add a clause (entailed by the original CNF formula) to avoid this combination of assignments in the future

Example

$$\begin{array}{l} (p \lor r) \land (q \lor r) \land (\neg p \lor \neg q \lor \neg r \lor \neg t) \\ \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t) \end{array}$$

Note: no unit propagation or pure literals present, branching necessary.

 $(p \lor r) \land (q \lor r) \land (\neg p \lor \neg q \lor r \lor t) \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t)$ No propagation possible, branch with *p*=true $(q \lor r) \land (\neg q \lor r \lor t) \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t)$ No propagation possible, branch with *q*=true $(r \lor t) \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t)$ No propagation possible, branch with *r*=true $t \wedge \neg t$ Conflict found in $t \rightarrow$ apply resolution on t for the original versions of conflicting clauses $(\neg r \lor t) \land (\neg r \lor \neg t)$ \rightarrow clause $\neg r$ is entailed by the original formula, add $\neg r$ as learned clause to original formula \rightarrow apply propagation on this formula new \rightarrow *p*=*true*, *q*=*true*, *r*=*false* \rightarrow search stops

- <u>Random restarts</u>: if the search is unsuccessful too long, stop the search, and start from scratch with learned clauses (and possibly a different variable/value ordering)
- <u>Clever indexing</u>: use heavily optimized data structures for storing clauses, atoms, and lists of clauses in which atoms occur
- Portfolios: run several different solvers for a short time; use data gathered from these runs to select the final solver to execute

Applications of SAT solvers

SAT solvers are usually implementations of the DPLL algorithm. They are used for:

- Model checking
- Planning
- Scheduling
- Experiment design
- Protocol design (networks)
- Multi-agent systems
- E-commerce
- Software package management
- Learning automata

Progress in SAT solvers

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

