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Clauses
Clauses are formulas consisting only of        and

they can also be written using ,      (after ) and      → →
(before )→

an atom or its negation is called a literal

Clause without 
positive literal

Clause without 
negative literal

Empty clause
is considered 
false

(brackets within a
clause are not allowed!)



Conjunctive & Disjunctive
Normal Form
A formula is in conjunctive normal form if it 

consists of a conjunction of clauses

“conjunction of disjunctions”
A formula is in disjunctive normal form if it consists 

of a disjunction of conjunctions



Conjunctive & Disjunctive
Normal Form
The transformation from CNF to DNF is exponential



Conjunctive Normal Form
Any formula can be written in CNF

(consequently, any formula can also be written in DNF, 
but the DNF formula may be exponentially larger)



Checking Satisfiability of
Formulas in DNF
Checking DNF satisfiability is easy: process one 

conjunction at a time; if at least one conjunction is not 
a contradiction, the formula is satisfiable

 → DNF satisfiability can be decided in polynomial time

Conversion to DNF is not feasible in most cases 
(exponential blowup)



Checking Satisfiability of 
Formulas in CNF
No polynomial algorithm is known for checking the 

satisfiability of arbitrary CNF formulas
Example: 
we could use such an algorithm to solve graph coloring with k colors

• for each node i, create a formula

indicating that each node i must have a color
• for each node i and different pair of colors c1 and c2, create a formula

indicating a node may not have more than 1 color
• for each edge, create k formulas

indicating that a pair connected nodes i and j may not both 
have color c at the same time



“At-most-once” constraint
Let us have variables                         and require that at 

most one of these variables is one
Constraints on the previous slide:

                        clauses in total→

We can do better...



“At-most-once” constraint
Introduce additional variables
Idea: let       be true if one of                    is true
Formally:

for all
3(n-1) clauses in total! 

(     and          may not be true at the same time)
(if      is true, then          is true)
(if      is true, then      is true)



SAT Solvers
A satisfiability solver (SAT solver) is an computer 

system that takes a CNF formula as input, and returns:
False, if the formula is unsatisfiable
A model, i.e. a truth assignment to the symbols in the 

formula satisfying the formula, if the formula is 
satisfiable.

A SAT solver can be used to solve many problems, like 
coloring problems, traveling salesmen problems, etc.



Resolution Rule

Given two clauses                           and                              ,
where                                             represent literals 
and it holds that                     , then it holds that

Essential in most satisfiability solvers for CNF formulas is the 
resolution rule for clauses:

Example:



Proof for Resolution

1. premise
2. premise
3.    assumption
4.    i 3
5. assumption
6. e 2,5→
7.    i 6
8.    e 1,3-4, 5-7

on an example



Completeness of Resolution
If it holds that                                 for clauses

                      (i.e. the clauses are a contradiction), then 
we can derive        from  
by repeated application of the resolution rule

How to find the resolution steps in general?
For some types of clauses it is easier... 



The story till now...
Semantic entailment: 

Are all models of formula      also models of      ?
If                , the formula        is unsatisfiable
We are interested in procedures for determining this 

relationship
Approach 1: search for a proof that uses the rules of 

natural deduction
Natural deduction provides “natural” proofs, i.e. short 

arguments such as humans would give; however, such 
proofs can be hard to find by a computer



The story till now...
Approach 2: employ the rules of resolution

Note that                  iff
We first normalize formulas       and          in conjunctive 

normal form (giving       and        )
Then we repeatedly apply the resolution rule on           

till we either cannot derive new clauses or we derive
 If we derive       by means of resolution, it can be shown that 

the formula is unsatisfiable
 Otherwise, it is satisfiable



The story till now...
Example of resolution

In the general case, the repeated application of 
resolution can yield an exponential number of 
clauses...
We would prefer not to store and generate all of these



Principles of 
Efficient SAT solvers



Definite clauses &
Horn clauses
A definite clause is a clause with exactly one positive 

literal

A horn clause is a clause with at most one positive 
literal

A clause with one positive literal is called a fact



Forward chaining for
Definite clauses
The forward chaining algorithm calculates facts 

that can be entailed from a set of definite clauses
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn  q→  in C where p1,...,pn are 
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.



Forward chaining for Horn 
clauses
We now also allow to add        and other clauses 

without positive literals to C
We stop immediately       when is found, and return 

that the set of formulas is contradictory.

Note: 
1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.



Deciding entailment
for Horn clauses
Suppose we would like to know whether

where                         are Horn clauses; then it suffices 
to determine whether

(we can show this by means of  introduction)→
As entailment of facts can be decided in linear time, 

Horn clause entailment can be determined in linear 
time as well



Deciding satisfiability of generic 
CNF formulas: DPLL
The DPLL algorithm for deciding satisfiability was 

proposed by Davis, Putman, Logeman and Loveland 
(1960, 1962) 

General ideas:
we perform depth-first search over the space of all 

possible valuations
based on a partial valuation, we simplify the formula to 

remove redundant literals
based on the formula, we fix the valuation of as many 

atoms as possible



DPLL: Simplification
If the valuation of atom p is “true”

every clause in which literal p occurs, is removed
from every clause in which p is negated,        is removed

Similarly, if the valuation of atom p is “false”
every clause in which literal        occurs, is removed
from every clause in which p occurs, literal p is removed

similar to resolution



DPLL: Simplification
Special case 1 of simplification is when an empty clause 

is obtained, i.e. the clause 

in this case the current valuation can never be extended 
to a valuation that satisfies the formula

Special case 2 of simplification is when the empty CNF 
formula is obtained, i.e. the formula

in this case we have found a satisfying valuation



DPLL: Fixing pure symbols
If an atom always has the same sign in a formula (i.e., 

the literals p and          do not occur at the same time), 
the atom is called pure. We fix the valuation of a pure  
atom to the value indicated by this sign

Note: we can apply simplification afterwards and remove 
redundant clauses



DPLL: Fixing unit clauses
If a clause consists of only one literal (positive or negative), 

this clause is called a unit clause. We fix the valuation of an 
atom occurring in a unit clause to the value indicated by 
the sign of the literal.

Also here, we apply simplification afterwards; after 
simplification, we may have new unit clauses, which we can 
use again; this process is called unit propagation



DPLL Algorithm

DPLL ( valuations V, formula φ )
φ' = simplification of φ based on V
if φ' is an empty formula then return true
if φ' contains the empty clause then return false
if φ' contains a pure atom p with sign v then 

return DPLL(V ∪ {p=v}, φ')
if φ' contains a unit clause for atom p with sign v then 

return DPLL(V ∪ {p=v}, φ')
let p be an arbitrary atom occurring in  φ'
if DPLL(V ∪ {p=true}, φ') then return true
else return DPLL(V ∪ {p=false}, φ')

Branching



Optimizations of DPLL
Component analysis: if the clauses can be 

partitioned such that variables are not shared between 
clauses in different partitions, we solve the partitions 
independently

Value and variable ordering: when choosing the 
next atom to fix, try to be clever (i.e. pick one that 
occurs in many clauses) 

component 1 component 2



Optimizations of DPLL
Clause learning: if a contradiction is found, try to 

find out which assignments caused this contradiction, 
and add a clause (entailed by the original CNF 
formula) to avoid this combination of assignments in 
the future

Example

Note: no unit propagation or pure literals present,
branching necessary.



Optimizations of DPLL

No propagation possible, branch with p=true

No propagation possible, branch with q=true

No propagation possible, branch with r=true

Conflict found in t  apply resolution on → t for the original
versions of conflicting clauses

 → clause         is entailed by the original formula, add
as learned clause to original formula  apply propagation on →
this formula new  → p=true, q=true, r=false  → search stops



Optimizations of DPLL

Random restarts: if the search is unsuccessful too 
long, stop the search, and start from scratch with 
learned clauses (and possibly a different variable/value 
ordering)

Clever indexing: use heavily optimized data 
structures for storing clauses, atoms, and lists of 
clauses in which atoms occur

Portfolios: run several different solvers for a short 
time; use data gathered from these runs to select the 
final solver to execute



Applications of  SAT solvers
SAT solvers are usually implementations of the DPLL 
algorithm. They are used for:
Model checking
Planning
Scheduling
Experiment design
Protocol design (networks)
Multi-agent systems
E-commerce
Software package management
Learning automata
...

http://www.youtube.com/watch?v=0gt503wK7AI

http://www.youtube.com/watch?v=0gt503wK7AI


Progress in SAT solvers
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